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1 Introduction
Curry’s paradox is well known.1 It comes in both set theoretic and semantic
versions. Here we will concentrate on the semantic versions. Historically,
these have deployed the notion of truth. Those who wish to endorse an un-
restricted T -schema have mainly endorsed a logic which rejects the principle
of Absorption, A → (A → B) |= A → B. High profile logics of this kind
are certain relevant logics; these have semantics which show how and why
this principle is not valid. Of more recent times, paradoxes which are clearly
in the same family have been appearing; but these concern the notion of
validity itself. The standard semantics of relevant logics seem powerless to
address these. But they can. This note shows how. The upshot can be seen
as a return to the roots of relevant logic, in a sense to become clear.

2 Background

2.1 The Usual Curry Paradoxes
Let us start with a couple of standard forms of the paradox. It will be useful
to formulate them in terms of natural deduction arguments, operating on
sequents of the form X � A, where X is a set of premises, and A is the
conclusion. When enumerating the members of X I will omit set braces.
One may read ‘X � A’ as ‘X implies A’.

The logic has axioms of the form:

A � A

the rules of modus ponens (MP):
1See, e.g., Priest (2006), ch. 6.
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X � A → B Y � A
X ∪ Y � B

the conjunction rules (CR):

X � A ∧ B X � A Y � B
X � A (B) X ∪ Y � A ∧B

and Cut:

X � A Y,A � B
X ∪ Y � B

The theory of truth built on this has as axioms all instances of the T -
schema:

� T �A� ↔ A

where A ↔ B is defined as (A → B) ∧ (B → A). We assume, also, that we
have some form of self-reference which allows us to construct a sentence, C,
of the form T �C� → ⊥.2

The first version of the argument3 assumes the validity of the Absorption
schema (Abs):4

A → (A → B) � (A → B)

The argument then goes as follows.

1 T �C� ↔ C � T �C� ↔ C
2 T �C� ↔ C � T �C� → C CR
3 T �C� ↔ C � T �C� → (T �C� → ⊥)
4 T �C� ↔ C � T �C� → ⊥ Abs and Cut
5 T �C� ↔ C � C
6 T �C� ↔ C � T �C� ↔ C
7 T �C� ↔ C � C → T �C� CR
8 T �C� ↔ C � T �C� 5, 7 and MP
9 T �C� ↔ C � ⊥ 8, 4 and MP
10 � ⊥ T -schema and Cut

2⊥ can be taken to be governed by the axiom ⊥ � A, or simply replaced with any
sentence whatsoever.

3Curry (1942).
4This is often called Contraction, but I will reserve that name for the structural rule,

to be met later.
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The second form of Curry’s paradox5 uses the principle of pseudo modus
ponens (PMP):

� (A ∧ (A → B)) → B

together with one further fact about conjunction, idempotence (Idem):

� A ↔ (A ∧ A)

and a rule of substitution (Subst):

X � ϕ(A)
X,A ↔ B � ϕ(B)

where ϕ(A) is any context in which A occurs.
We then have:

1 � (C ∧ (T �C� → ⊥)) → ⊥ PMP
2 � (C ∧ C) → ⊥
3 C ↔ (C ∧ C) � C → ⊥ Subst
4 � C → ⊥ Idem and Cut
5 T �C� ↔ C � T �C� → ⊥ Subst
6 T �C� ↔ C � C
7 T �C� ↔ C � T �C� Subst
8 T �C� ↔ C � ⊥ 5, 7,MP
9 � ⊥ T -schema and Cut

2.2 Semantics
A standard solution to Curry’s paradox, by those who want to endorse an
unrestricted T -schema,6 is to reject PMP and Abs. Perhaps the simplest
and most robust justification for this is to use the semantical technology of
impossible worlds. In Routley/Meyer semantics, this works as follows.7

We take a language that contains the connectives → and ∧. As we will see,
it will be helpful to take the language to contain an intensional conjunction,
◦ (“fusion”), and a logical constant, t—thought of as the conjunction of all

5Meyer, Routley, and Dunn (1979).
6Such as Priest (2006), Field (2008), and Beall (2009).
7There is some flexibility about how, exactly, to set up the semantics, and what, exactly,

constitutes the logic B. The following is the approach of Routley, et al. (1982), chs. 4, 5,
except that they allow for a set of base worlds, P , and define x ≤ y as: for some w ∈ P ,
Rwxy. This does not affect the set of logical truths. A slightly different approach (the
“simplified semantics”) is given in Priest (2008), ch. 10.
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logical truths—as well. There may other connectives (and quantifiers) in the
language, but they are not relevant to the story, so I will ignore them in what
follows.

An interpretation is a structure �W,@, R, ν�, where W is a set (of worlds),
@ is the “base world”; R is a ternary relation on W ; and ν maps each world, w,
and parameter, p, to a value νw(p) ∈ {1, 0}. We define x ≤ y as: R@xy. Then
the interpretation must satisfy the following conditions, for all parameters,
p, and worlds, a, b, x, y:

• a ≤ a

• if a ≤ b then if νa(p) = 1 then νb(p) = 1

• if a ≤ b then if Rbxy then Raxy

• if a ≤ b then if Rxya then Rxyb

The last three clauses, together with the truth conditions for the connectives,
ensure that if a ≤ b then anything true at a is true at b. Indeed, one can
think of this as the meaning of ‘≤’.

Given an interpretation, ν is extended to an evaluation of all formulas at
worlds by the recursive clauses:

• νw(t) = 1 iff @ ≤ w

• νw(A ∧B) = 1 iff νw(A) = νw(B) = 1

• νw(A ◦ B) = 1 iff for some x, y in W such that Rxyw, νx(A) = 1 and
νy(B) = 1

• νw(A → B) = 1 iff for all x, y in W , such that Rwxy, if νx(A) = 1
then νy(B) = 1

An inference with premises Σ and conclusion A is valid, Σ |= A, iff for every
interpretation, if ν@(B) = 1, for all B ∈ Σ, then ν@(A) = 1. |= A iff ∅ |= A.
It is also easy to check that ∅ |= A iff t |= A. These semantics give the (→,
∧, ◦ fragment) of the basic relevant logic B. Further constraints on R give
stronger logics.

The semantics validate the sequent rules so far used, in the sense that if
‘�’ is replaced by ‘|=’, and the premises are true (at @), so is the conclusion.
However, they verify neither Abs nor PMP. It is not hard to show that both
A → (A → B) � A → B and � (A ∧ (A → B)) → B. The trick in both
cases is the deployment of worlds which are not closed under modus ponens.
There are (impossible) worlds where A and A → B are true and B is not.
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The detailed construction of counter-models is left as an exercise. It can also
be shown that, given this machinery, Abs is equivalent to PMP , exposing a
connection between the two versions of the curry paradox.

It should be emphasized that none of this threatens the validity of modus
ponens. It is easy to check that A,A → B |= B. This follows from the fact
that R@@@. The validity of Abs and PMP , note, requires the condition
that for all w ∈ W , Rwww.

3 The Problem: Validity Curry
So far so good. However, of late, paradoxes clearly in the same family as
Curry’s paradox, deploying the notion of validity, have been turning up.
Thus, one thing that one should clearly expect from validity is that a valid
inference be truth-preserving. Thus, if we express the validity of a single-
premise inference from A to B as V (�A� �B�), then we would expect to have:
V (�C� �D�) � T �C� → T �D�.

But as I have noted, modus ponens is valid: A,A → B |= B;8 so we have
� V (�A ∧ (A → B)� �B�), and so by Cut, � T �A ∧ (A → B)� → T �B�. The
T -schema and Subst then give PMP, and we are back with Curry’s paradox.9

In fact, truth is playing no essential role in this argument. We would
equally expect a notion of validity to give us V (�C� �D�) � C → D, which
delivers PMP even faster. And given this, we can formulate a version of
Curry’s paradox directly. Validity would seem to be governed by the rules,
V1 and V2, respectively:

C � D
V (�C� �D�) � C → D � V (�C� �D�)

Given the usual self-reference, we can construct a sentence, C, of the form
V (�C� �⊥�).

8In fact, one can establish this using just the sequent rules cited. Details are left as an
exercise.

9See, e.g., Field (2008).
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We then have:10

1 V (�C� �⊥�) � V (�C� �⊥�)
2 C � V (�C� �⊥�)
3 C � C → ⊥ V 1, Cut
4 C � C
5 C � ⊥ 3, 4,MP
6 � V (�C� �⊥�) 5, V 2
7 � C
8 � C → ⊥ 6, V 1, Cut
9 � ⊥ 7, 8,MP

Call this argument (*) for future reference.
The rejection of Abs and PMP does nothing to help defuse these argu-

ments. As we noted, the standard semantics validates modus ponens ; valid
inferences preserves truth at @ (actual truth), V 1; and V 2 appears little
more than definitional.

The astute reader will have observed, however, that in the deduction (*)
we have used the assumption C twice in the deduction of ⊥ at line 5. It looks
as though some kind of contraction is involved in this. But the contraction
has to do with the use of premises, not antecedents of conditionals. The
standard semantics conceptualises validity as a relation between premises,
thought of as sets of sentences, and a conclusion which is a sentence. And
contraction for sets is trivial: {A,A} = {A}. How, then, can one make sense
of failures of premise contraction semantically? The rest of the paper shows
how.

4 Background to the Solution: Substructural
Proof-Theory

We take our cue from a substructural proof theory.11 Sequents are still of
the form X � A, but the Xs are different. Before, we had only one way of
combining formulas into collections of premises: an extensional form, which
combines premises into sets. Now we will have two, the extensional one,
which we will write as ⊕, and an intensional one, which we will write as ⊗.
I will come back to the meaning of ⊗ in due course. For the nonce, one can
think of it as some sort of intentional conjoining. Collections of formulas

10Beall and Murzi (201+). See also Whittle (2004).
11Details can be found in Slaney (1990), Read (1988), chs. 4, 5, and Restall (2000), chs.

2, 11.
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obtained by wielding these two methods of combination are called bunches.
Formally, bunches are the smallest class generated by the following rules:

• 1 is a bunch.

• Any formula is a bunch.

• If X and Y are bunches then (X ⊕ Y ) and (X ⊗ Y ) are bunches.

I will omit outermost parentheses. 1 is a bunch that corresponds to the
constant t, in a sense to be made precise in a moment.

Axioms of the deduction system are sequents of the form:

A � A

The rules governing the connectives are as follows:

X � A X � B X � A ∧ B
X � A ∧ B X � A (B)

X ⊗ A � B Y � A → B X � A
X � A → B Y ⊗X � B

X � A Y � B X � A ◦B Y � C
X ⊗ Y � A ◦B YA⊗B(X) � C

X � t Y � A
1 � t Y1(X) � A

where XY (Z) means the bunch X with any or all occurrences of the bunch
Y replaced by the bunch Z.

As well as the rules for the connectives, we have structural rules concern-
ing the bunches. I will write such a rule in the form X �→ Y . This is to be
understood as:

Z � A
ZX(Y ) � A

The structural rules may be formulated as follows:
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X ⊕ (Y ⊕ Z) �→ (X ⊕ Y )⊕ Z Associativity

X ⊕ Y �→ Y ⊕X Commutativity

X ⊕X �→ X Contraction

X �→ X ⊕ Y Weakening

X �→ 1⊗X Push

1⊗X �→ X Pop

The first three of these effectively turn ⊕ into a set-forming (as opposed to
a sequence-forming, multiset-forming, or list-forming) operator. The next is
a version of monotonicity. The last two give us the distinctive properties of
1. We may also have a rule of Cut, although this is eliminable:12

X � A Y � B
YA(X) � B

Examples of proofs with these various rules can be found in the references
cited.

Note that there is no bunch which corresponds to the empty set of
premises. The is no sequent of the form � A. (Nothing follows from nothing!)
What plays the role of the empty set of premises, is the bunch 1. We may
therefore express the thought that A follows from the empty set of premises
as 1 � A.

We may now define a map from bunches to formulas, #, by recursion:

• 1# is t

• A# is A

• (X ⊕ Y )# is X# ∧ Y #

• (X ⊗ Y )# is X# ◦ Y #

The definition allows us to establish the connection between ⊗ and ◦, on
the one hand, and ⊕ and ∧, on the other, namely: X � A is inter-derivable

12See the cited reference by Restall.
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with t � X# → A. The proof is by induction on the structure of X in both
directions, and I leave the details as an exercise.13

We can also spell out the connection between the semantics and the de-
duction system. Given an interpretation, I, say that A suffices for B in I iff
for every world, w, if A is true at w, so is B. It is not difficult to show that
for any I, A suffices for B iff A → B is true at @ (in I). Say that A suffices
for B (period) iff A suffices for B in every interpretation, i.e., A → B is a
logical truth.

The soundness and completeness theorem for the logic B tells us that
X � A is provable iff X# suffices A.14 Hence:

|= X# → A iff X# suffices for A
iff X � A is provable

I note that the result carries over to logics stronger than B, when further
structural rules are added. Thus, the addition of the analogues of any of
the first three structural rules with ⊗ instead of ⊕ delivers stronger relevant
logics. (All three together give the logic R.) Adding the analogue of the
fourth rule delivers a proof of t � A → (B → A), and so a logic which is not
a relevant logic.

Given the importance of Abs and PMP in the present context, let us note
their (non-)proofs in the logic B. (The may be provable in stronger logics.)
For Abs :

1 A → (A → B) � A → (A → B)
2 A � A
3 (A → (A → B))⊗ A � A → B MP
4 A � A
5 ((A → (A → B))⊗ A)⊗ A � B MP
6 (A → (A → B))⊗ A � B ?
7 A → (A → B) � A → B

The argument fails without a structural rule of the form (X⊗Y )⊗Y �→ X⊗Y .
This is needed at line 6.

For PMP, let X be A ∧ (A → B). Then:
13In standard presentation of linear logic, there are the two notions of conjunction in the

language, but only one form of premise combination, the intentional one. This gives rise to
certain features, such as the failure of distribution for the extensional connectives. Given
the connection between the conjunctions and premise combination, it would seem to me
to be much more natural to have both forms of premise combination (and so distribution),
in the way that I have set things up.

14I omit the details of proof here. They can be extracted from the references cited.
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1 X � A
2 X � A → B
3 X ⊗X � B
4 X � X → B
5 1⊗X � X → B
6 1 � X → (X → B)

All we can show is an uncontracted version of the principle. To show PMP
itself, we would need the structural rule X ⊗ X �→ X, to be applied after
line 3.

5 The Solution

5.1 Validity Curries Revisited
Armed with this material, we can now address the validity curries.

Given the proof-theory, the natural definition of validity is that an infer-
ence with premise, X, and conclusion, A, is valid if X � A is true. Now:

X � A is provable iff X# suffices for A
iff |= X# → A
iff t � (X# → A) is true
iff X � A is true

(For lines 2 and 3, if C → D is a logical truth, then it follows from the
conjunction of all logical truths; and if it follows from the conjunction of all
logical truths, it is a logical truth.) Hence, all these are equivalent ways of
saying that an inference is valid.

The problem of truth preservation is now solved because modus ponens in
the appropriate form is not valid. It is not the case that |= A∧(A → B) → B.

For the argument (*), V1 is fine. It records the fact that a valid inference
preserves truth, which is correct: if A → B is a logical truth, then A suffices
for B. V2 now becomes:

C � D
1� V (�C� �D�)

which is true by definition.15

15I note that as long as there are no quantifiers in the language, one can interpret the
system with the V rules in the one without, simply by translating V (�C� �D� as C → D.
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And the argument (*) now looks like this:

1 V (�C� �⊥�) � V (�C� �⊥�)
2 C � V (�C� �⊥�)
3 C � C → ⊥ V 1, Cut
4 C � C
5 C ⊗ C � ⊥ 3, 4,MP
6 C � ⊥ ?
7 1 � V (�C� �⊥�) 5, V 2
8 1 � C
9 1 � C → ⊥ 6, V 1,Cut
10 1⊗ 1 � ⊥ 7, 8,MP
11 1 � ⊥ Pop

Call this argument (**). It involves an illicit contraction at line 6.

5.2 Reasoning from Information
So does this mean that one cannot use modus ponens? No. Modus ponens
is one of the rules of inference. Given a proof of A and a proof of A → B,
we have a proof of B. But B will depend on whatever A depends on “fuse”
whatever A → B depends on.

This does have a implications for how we are to understand what it is to
be provable from some information, such as that provided by the axioms of
an axiom system, however. Normally, this is specified just as a list of formu-
las. How is it to be understood that we may combine these: extensionally,
intensionally, in what order? The answer is that the specification should be
understood as entitling us to any bunch made up of the formulas on the
list (and 1). Specifically, if Σ is a set of sentences, and B(Σ) is the set of
bunches formed from members of Σ, we are allowed to help ourselves to any
member of B(Σ). That is, A follows from Σ iff for some X ∈ B(Σ), X � A
is provable. Given this, when inferring from the axioms, we can use modus
ponens (and adjunction) with impunity.16

It might be thought that we now have a “revenge problem”. Suppose
that we define V al(�A� , �B�) as: for some X ∈ B(A), V (

�
X#

�
, �B�); and

then we run argument (**) with V al instead of V . The move from lines
16In his (1990), Slaney moots a solution to the sorites paradox. He notes, in effect,

that given the premises of a sorites inference, Σ = {A0, A1 → A2, ... , An−1 → An},
the deductive machinery allows us to establish only that (

�
1
i=n(Ai → Ai−1)⊗A0) → An

(associating to the right). Given that we cannot accept An, we are not entitled to an
arbitrary bunch in B(Σ). The premises cannot be taken together, as it were, in the
appropriate fashion.
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5 to 7 of the argument is now fine. The problem is with V1. Clearly, we
should not have V al(�C� , �⊥�) � C → ⊥. Effectively, V al(�C� , �⊥�) is
(C → ⊥)∨(C#

1 → ⊥)∨(C#
2 → ⊥)∨ ..., where C,C1, C2, ... is an enumeration

of B(C). (Recall that C# is just C.) Clearly, we should not expect to have
(C → ⊥) ∨ (C#

1 → ⊥) ∨ (C#
2 → ⊥) ∨ ... � C → ⊥.

Line 2 of the argument will give us, in effect: C � (C → ⊥) ∨ (C#
1 →

⊥) ∨ (C#
2 → ⊥) ∨ .... The obvious next step would be 1 � (C → (C →

⊥) ∨ (C → (C#
1 → ⊥)) ∨ (C → (C#

2 → ⊥)) ∨ ..., which is not intuitively
valid.

It might be thought that some other intuitive form of reasoning that
would do the job. Line 2 gives us something like: C � ∃B ∈ B(C)(B# → ⊥).
With existential instantiation we would get that for some bunch, B, in B(C),
C � B# → ⊥, so C ⊗ B � ⊥. Hence for some B� in B(C), B� � ⊥; and
so, 1 � V al(�C� , �⊥�). But existential instantiation will not work in this
context. The move from C � ∃xD to ∃x(C � D) (x not free in C) is, again,
obviously invalid.17

5.3 Fusion
But of course, all this presupposes that we can make sense of the machinery
of bunches, and in particular of ⊗. This, as is clear, is simply a way of
representing fusion, ◦. But what does fusion mean? ◦ is a sort of conjunction,
since it is the residual of →. That is, A � B → C is equivalent to A◦B � C.
But to get a better understanding of fusion, we need to turn to the semantics.

In the semantics, the truth conditions of ◦ are given in terms of the
ternary relation (as are those of →). Understanding the ternary relation is a
vexed issue; but, it turns out, there are perfectly natural understandings of
this.18 In particular, we can think of Rxyz as meaning that when functions
in x are applied to the objects in y the results delivered are in z. We may
then think of conditionals, semantically, as functions of a certain kind, from
propositions to propositions. Specifically, A → B is a function which maps
the proposition A to a proposition at least as strong as B. Thus, ◦ represents
functional application. (And functional application is neither associative,
commutative, nor contracting.)

From the perspective of this paper, then, the validity curry arises be-
cause certain logical machinery is too crude, forcing us to collapse important
distinctions. Relevant logic has two sorts of conjunction, ∧ and ◦. Classi-
cal logic collapses that distinction; but maintaining it solves the standard

17In connection with this, see Bacon (2013).
18See Beall, et al. (2012) and Priest (201+).
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curry paradoxes. We do not have ((A → B) ∧ A) → B, but we do have
((A → B) ◦ A) → B. What the validity curries appear to show us, per-
haps unsurprisingly in retrospect, is that this distinction needs to be carried
through in a more thorough-going manner: it needs to be applied not only for
antecedents of conditionals but for premises of inferences. We need to distin-
guish between ⊕ and ⊗. We cannot get X � A → B from X ⊕ A � B, but
we can get it from X⊗A � B. Orthodox semantics—including those of stan-
dard relevant logics, which takes premises to be sets, or multisets—collapses
this important distinction.

5.4 Two Concepts of Validity
I end on an historical note. In classical logic, because of modus ponens and
conditional proof, we have:

|= A → B iff A |= B

The validity of a (one premise) argument can be defined in either way. Older
logic texts used the left-hand definition; newer texts the right-hand one.

In relevant logic, with the usual semantics, the equivalence no longer
holds. The left-hand side is stronger than the right. (It amounts to truth
preservation over all worlds, rather than truth preservation over @.) So which
notion gives the correct account of validity?19

The standard definition now is, perhaps, the right-hand one; but older
texts in relevant logic, written before the semantics were well established,
used the left-hand one.20 And there are some good reasons to do so—quite
independently of a solution to the validity curries. The right-hand approach
divorces the conditional from entailment: A |= B → B, but � A → (B →
B); and A ∧ (A → B) |= B, but � (A ∧ (A → B)) → B. This is not
necessarily an objection; but it does make the consequence relation look
a bit odd from a relevant perspective, and it raises the question of what,
exactly, the conditional means.21

19The distinction is analogous to one found in discussions of the logic of the actually
operator. See Humberstone (2004). The best account there is also moot. See Hanson
(2006).

20I owe this observation to Stephen Read.
21From the present perspective, what happens to the validity curry argument with this

notion of validity? The answer is that V 1 breaks down, since truth preservation at the
base world does not guarantee truth preservation at all worlds. A slightly different version
of the argument appeals to the principle V 3: V (�C� , �D�)⊕C � D. Lines 2 and 4 of (**)
give us that C � V (�C� , �⊥�)⊕⊥, and Cut then gives us C � ⊥. But there is no reason
to suppose that V 3 holds. What does hold is the same thing with ⊗ instead of ⊕; and
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The left-hand approach, by contrast, looks more natural. Indeed, one of
the motivating thoughts of early relevant logic was exactly to have a connec-
tive in the language which expressed entailment.22 Thus, validity is expressed
by the logical truth of the conditional, as a matter of definition. And an in-
ference from A to B is valid iff A suffices logically for B; that is, in every
interpretation, and any world of that interpretation, w, if A is true at w, so
is B. All these pieces of the jigsaw then fit together nicely.

In some sense, then, this paper represents a return to the roots of relevant
logic.23
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